EconPapers    
Economics at your fingertips  
 

Progress, challenges, and prospects of CO2 mineral sequestration in basalt: A critical review

Yue Yin, Liwei Zhang, Xiaomin Cao, Qi Li, Manguang Gan and Yan Wang

Applied Energy, 2025, vol. 381, issue C, No S030626192402511X

Abstract: Carbon capture and storage (CCS) represents an effective method for addressing climate change. Among various storage techniques, CO2 mineral sequestration in basalt is the most stable and efficient approach. This process involves the reaction of CO2 with basalt minerals that are rich in metal ions, resulting in the formation of carbonates. This review provides a comprehensive overview of the previous research on CO2 properties and the background and geochemical processes of CO2 mineral sequestration in basalt across multiple scales and dimensions. In previous studies, four major challenges of CO2 mineral sequestration in basalt have been identified: water consumption during the mineralization process, insufficient research on changes in basalt mechanical properties induced by mineralization, inaccurate parameters in the computational model, and a lack of effective reaction rate control methods. In response to these challenges, in this review, we propose future research directions, including (1) implementing CO2 mineral sequestration in basalt with seawater substitution for freshwater; (2) clarifying the impact of basalt-water-CO2 reactions on basalt mechanical properties; (3) precise adjustment of key parameters to refine the computational model; and (4) developing feasible methods to control the rates of basalt-water-CO2 reactions.

Keywords: Carbon capture and storage (CCS); Basalt; Mineralization; Water; Carbonate (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192402511X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:381:y:2025:i:c:s030626192402511x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.125127

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:381:y:2025:i:c:s030626192402511x