EconPapers    
Economics at your fingertips  
 

Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles

Dong Hu, Chao Huang, Jingda Wu, Henglai Wei and Dawei Pi

Applied Energy, 2025, vol. 381, issue C, No S0306261924025224

Abstract: This study addresses data efficiency and reliability issues in reinforcement learning (RL)-based energy management strategies (EMS) for hybrid electric vehicles (HEVs). A novel expert-guided RL (EGRL) paradigm is proposed, combining deep ensemble methods with a digital expert model (DEM) for real-time EMS intervention across various scenarios. DEM, trained via domain adversarially invariant meta-learning (DAIML), adapts to different driving conditions. An intervention mechanism, based on uncertainty evaluation in the deep ensemble, allows DEM to guide and supervise RL training, ensuring reliability. The EMS optimizes energy consumption, battery health, and electricity maintenance for the range-extended electric bus (REEB) system. Simulation results show the paradigm significantly improves energy management, nearing optimal performance and surpassing traditional RL methods. EGRL achieves an average 15.8% improvement in economic benefit across all test cycles. This research offers an innovative solution for EMS and has broad potential for other automation applications.

Keywords: Energy management; Reinforcement learning; Meta-learning; Digital expert guidance; Range-extended electric bus (REEB) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924025224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025224

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.125138

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025224