Real-time state-of-charge estimation for rechargeable batteries based on in-situ ultrasound-based battery health monitoring and extended Kalman filtering model
Fan Yang,
Qian Mao,
Jiaming Zhang,
Shilin Hou,
Guocui Bao,
Ka-wai Eric Cheng,
Jiyan Dai and
Kwok-Ho Lam
Applied Energy, 2025, vol. 381, issue C, No S0306261924025455
Abstract:
Ultrasonic testing has emerged as a crucial non-invasive method for monitoring battery health, particularly for accurate State-of-Charge (SoC) estimation in Battery Management Systems (BMS). Unlike invasive methods relying on real-time collection of battery current and voltage, ultrasonic inspection offers timely feedback without interfering with battery properties. However, challenges remain in accurately estimating SoC during rechargeable battery discharging due to ultrasonic echo interference. This study presents an ultrasound-based in-situ rechargeable battery health monitoring system, incorporating advanced signal processing techniques. The proposed Ultrasonic Signal Empirical Mode Decomposition-Extended Kalman Filtering (USED-EKF) algorithm, based on Biot's theory, achieves real-time SoC estimation with exceptional accuracy (maximum error 0.63 %). Compared to conventional EKF, USED-EKF outperforms with significantly lower errors under constant current conditions. Additionally, our model enables the detection of overcharged batteries using ultrasound echo for the first time. This research demonstrates the potential of ultrasonic testing in cost-effective battery maintenance and explosion prevention, contributing to advancements in battery monitoring and safety measures. This research showcases the potential of ultrasonic testing as a cost-effective tool for battery maintenance and the prevention of battery explosions. The achieved results position our study as a pivotal driver in expediting these critical processes, highlighting the significance of our proposed model in advancing battery monitoring and safety measures.
Keywords: Extended Kalman filtering; State-of-charge; Ultrasonic testing; Hilbert transform; Ultrasound in-situ rechargeable battery health monitoring system (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924025455
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025455
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.125161
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().