Industrial sector pathways to a well-below 2 °C world: A global integrated assessment perspective
Marianne Zanon-Zotin,
Luiz Bernardo Baptista,
Pedro R.R. Rochedo,
Alexandre Szklo and
Roberto Schaeffer
Applied Energy, 2025, vol. 381, issue C, No S0306261924025571
Abstract:
The heavy industry is often regarded as hard-to-abate due to its importance to infrastructure build-up and capital stock, its reliance on high-temperature heat requirements, and the critical role it plays in global supply chains and security. These complexities have often been invoked to justify the persistence of residual greenhouse gas (GHG) emissions from cement, steel, and chemicals production by the year of net-zero, which, in contrast, suggest the need for global-scale roll-out of carbon dioxide removal (CDR) technologies. In this study, we use the global integrated assessment model (IAM) COFFEE with a detailed representation of industrial processes to understand the role of the industrial sector in climate change mitigation scenarios with different temperature ambitions. Our findings reveal a nuanced picture. While the industrial sector presents residual emissions of 1300–7600 MtCO2yr−1 in well-below 2 °C scenarios by 2050, it also emerges as a key mitigation asset in specific subsectors (e.g. chemicals and steel) and regions (e.g. AUS, BRA, CAN CAM, SAM), depending on the level of climate ambition pursued and the availability of biomass and carbon capture scale-up. Thus, the sector's role in climate change mitigation is context-dependent, opening pathways for strategic planning and technological and regional targeted actions.
Keywords: Integrated assessment modelling; Iron and steel; Chemicals; Cement; Industry decarbonization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924025571
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025571
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.125173
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().