EconPapers    
Economics at your fingertips  
 

A Multi-Objective evolutionary algorithm-based optimization framework for hybrid absorption-compression heat pump systems

Junzhuo Wei, Di Wu and Ruzhu Wang

Applied Energy, 2025, vol. 382, issue C, No S0306261924026126

Abstract: The hybrid absorption-compression heat pump (HACHP) system has garnered widespread attention due to its unique advantage of combining absorption and compression heat pump technologies, allowing it to operate over a wider temperature range and exhibit higher system efficiency. However, the distinct characteristics of the HACHP system's performance curves, the nonlinear coupling between variables, and the diverse performance indicators present significant challenges for system optimization. To address these challenges, this paper proposes a simulation-based optimization framework specifically tailored for HACHP systems, using a multi-objective evolutionary algorithm (MOEA) to tackle constrained multi-objective optimization problems (CMOP). The framework integrates three innovative algorithms: differential evolution optimized symbolic regression (DEOSR), constrained range adaptive sampling (CRAS), and variable speed mutation (VSM). The DEOSR algorithm models the constraint relationships between system variables through inequality fitting, and after comparing various mutation strategies, achieves an optimal fitting result with an R2 of 0.9964 and an RMSE of 1.9912. The CRAS algorithm enhances the diversity of the initial population through a classified sampling strategy, significantly improving the population's coverage in the value space and effectively preventing the risk of missing boundary optima in the HACHP system. The VSM algorithm dynamically adjusts the mutation rate during the optimization process, balancing global and local search capabilities, and effectively addresses the abrupt changes often observed in heat pump performance curves. Additionally, the framework incorporates a strategy based on non-dominated sorting and reference points method (RPM), enabling it to efficiently handle high-dimensional multi-objective optimization problems. Ultimately, this framework was successfully applied to a thermally coupled HACHP system.

Keywords: Hybrid absorption-compression heat pump; Evolutionary algorithm; Multi-objective optimization; TOPSIS (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924026126
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026126

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.125228

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026126