EconPapers    
Economics at your fingertips  
 

Simplicity in dynamic and competitive electricity markets: A case study on enhanced linear models versus complex deep-learning models for day-ahead electricity price forecasting

Xuehui Mao, Shanlin Chen, Hanxin Yu, Liwu Duan, Yingjie He and Yinghao Chu

Applied Energy, 2025, vol. 383, issue C, No S0306261924025856

Abstract: In the transitioning electricity market of China, accurate forecasting of Day-Ahead Electricity Prices (DAEP) is crucial for strategic planning and profit optimization of market participants. It plays a significant role in resource allocation and in enhancing the efficiency of the energy system. DAEP forecasting in complex electricity markets is challenging due to a multitude of factors, including end-user consumption patterns and physical elements like network losses and transmission congestion. Furthermore, DAEP bidding strategies are often entwined with strategic gaming behavior. Motivated by this, we introduce a novel enhanced linear framework designed to optimize the trade-off between preserving historical patterns (the memory function) and extending predictions to new situations (the generalization function) in DAEP forecasting. The framework employs a linear network to capture data trends and Multi-Layer Perceptron networks for the robust extraction of intricate features and generalization. The proposed enhanced linear framework is developed and evaluated using real-world data from 3 geographically distinct power plants in Guangdong, the province with the highest economic scale and electricity consumption in China. Our approach outperforms representative deep-learning methods, including the Long Short-Term Memory model and Transformer models, with improvements of RMSE up to 26.64% and 51.80%, respectively. Additionally, the results reveal that complex models do not always outperform more straightforward ones in real-world markets characterized by extensive interaction and competition. This indicates the proposed framework provides a straightforward but effective method for time-series DAEP forecasting within the competitive electricity markets. Accurate DAEP forecasting can enhance grid security, facilitate optimal resource allocation, and promote the integration of green and low-carbon power sources into the urban energy system.

Keywords: Electricity price; Electricity trading; Day-ahead forecasting; Time-series forecasting; Machine learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924025856
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261924025856

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.125201

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924025856