Quantum Reinforcement Learning for real-time optimization in Electric Vehicle charging systems
Hairun Xu,
Ao Zhang,
Qingle Wang,
Yang Hu,
Fang Fang and
Long Cheng
Applied Energy, 2025, vol. 383, issue C, No S0306261925000091
Abstract:
The rapid growth of electric vehicles (EVs) presents new challenges for EV charging scheduling, particularly due to the unpredictable nature of charging demand and the dynamic availability of resources. Currently, Deep Reinforcement Learning (DRL) has become a critical technology for improving scheduling efficiency. At the same time, advancements in quantum computing have led to Quantum Neural Networks (QNNs), which use the superposition states of quantum bits for more efficient information encoding. Building on these advancements, this study explores Quantum Reinforcement Learning (QRL) for EV charging systems. We propose a method called QRL-based Electric Vehicle Charging Scheduling (Q-EVCS) to optimize charging resource allocation based on real-time user demand. This approach aims to reduce average charging service times, increase the service success rate, and lower operational costs. We provide the detailed design and implementation of our approach, and our experimental results demonstrate that Q-EVCS maintains performance levels comparable to the DRL-based method while significantly reducing the number of model parameters.
Keywords: Quantum Neural Networks; Reinforcement learning; EV charging (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925000091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000091
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125279
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().