PyPSA-Earth sector-coupled: A global open-source multi-energy system model showcased for hydrogen applications in countries of the Global South
Hazem Abdel-Khalek,
Leon Schumm,
Eddy Jalbout,
Maximilian Parzen,
Caspar Schauß and
Davide Fioriti
Applied Energy, 2025, vol. 383, issue C, No S0306261925000467
Abstract:
This study presents sector-coupled PyPSA-Earth: a novel global open-source energy system optimization model that incorporates major demand sectors and energy carriers in high spatial and temporal resolution, to enable energy transition studies worldwide. The model includes a workflow that automatically downloads and processes the necessary demand, supply and transmission data to co-optimize investment and operation of energy systems of countries or regions of Earth. The workflow provides the user with tools to forecast future demand scenarios and allows for custom user-defined data in several aspects. Sector-coupled PyPSA-Earth introduces novelty by offering users a comprehensive methodology to generate readily available sector-coupled data and model of any region worldwide, starting from raw and open data sources. The model provides flexibility in terms of spatial and temporal detail, allowing the user to tailor it to their specific needs. The capabilities of the model are demonstrated through two showcases for Egypt and Brazil. The Egypt case quantifies the relevant role of PV, exceeding 35 GW, and electrolysis in Suez and Damietta regions, for meeting 16% of the EU hydrogen demand. Complementarily, the Brazil case confirms the model’s ability in handling hydrogen planning infrastructure, including repurposing of existing gas networks which results in 146 M€ lower costs than building new pipelines. The results prove the suitability of sector-coupled PyPSA-Earth to meet the needs of policymakers, developers, and scholars in advancing the energy transition. The authors invite the interested individuals and institutions to collaborate in the future developments of the model within PyPSA meets Earth initiative.
Keywords: PyPSA-earth; Energy system modelling; Sector-coupling; Energy infrastructure; Hydrogen export; Hydrogen policies (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925000467
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000467
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125316
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().