EconPapers    
Economics at your fingertips  
 

Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning

Xinyi Wang, Hanna M. Breunig and Peng Peng

Applied Energy, 2025, vol. 383, issue C, No S0306261925000765

Abstract: Hydrogen is pivotal in the transition to sustainable energy systems, playing major roles in power generation and industrial applications. Metal–organic frameworks (MOFs) have emerged as promising mediums for efficient hydrogen storage. However, identifying potential candidates for deployment is challenging due to the vast number of currently available synthesized MOFs. This study integrates molecular simulations, machine learning, and techno-economic analysis to evaluate the performance of MOFs across broad operation conditions for hydrogen storage applications. While previous screenings of MOF databases have predominantly emphasized high hydrogen capacities under cryogenic conditions, this study reveals that optimal temperatures and pressures for cost minimization depend on the raw price of the MOF. Specifically, when MOFs are priced at $15/kg, among the 9720 MOFs tested, 9692 MOFs achieve the lowest cost at temperatures between 170 K and 250 K and a pressure of 150 bar. Under these optimal conditions, 362 MOFs deliver a lower levelized cost of storage than 350 bar compressed gas hydrogen storage. Furthermore, this study reveals key material properties that result in low system cost, such as high surface areas (>3000 m2/g), large void fractions (>0.78), and large pore volumes (>1.1 cm3/g).

Keywords: Metal–organic framework; Hydrogen storage; Machine learning; Techno-economics analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925000765
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000765

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125346

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000765