EconPapers    
Economics at your fingertips  
 

Quantifying spatio-temporal carbon intensity within a city using large-scale smart meter data: Unveiling the impact of behind-the-meter generation

Soma Sugano, Yu Fujimoto, Yuto Ihara, Masataka Mitsuoka, Shin-ichi Tanabe and Yasuhiro Hayashi

Applied Energy, 2025, vol. 383, issue C, No S0306261925001035

Abstract: This study introduces a novel method for calculating spatio-temporal carbon intensity variations within a city using smart meter data. By integrating smart meter data with solar radiation data from weather satellites, the method predicts electricity demand and solar power generation across 1-km grid areas, achieving higher spatial resolution for carbon intensity distribution than existing models. Accounting for behind-the-meter self-consumption enables dynamic visualisation of carbon intensity variations driven by renewable energy adoption in localised urban areas, offering a more detailed assessment compared to conventional methods focusing solely on temporal fluctuations in the grid's energy mix. The method was applied to a dataset of approximately 410,000 smart meters in Utsunomiya City, Japan. Findings reveal that carbon intensity variations are affected by weather and seasonal changes. Notably, suburban areas with a higher proportion of prosumers exhibit lower carbon intensity than urban centres, highlighting significant intra-city variations linked to local renewable energy utilisation. This method can enhance the efficient use of distributed energy resources within cities and support prioritising low-carbon renewable energy through strategies such as demand response program development, optimising electric vehicle charging schedules, and identifying priority areas for photovoltaic and battery storage deployment.

Keywords: CO2 emission factor; Distributed energy resources; Energy management system; Renewable energy; Power meters; Smart city (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001035
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001035

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125373

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001035