Serial electrochemical hydrogen compressor stack for high-pressure compression
Chanho Chu,
Minsoo Kim,
Youngki Kim,
Sihyung Park,
Taeyoung Beom,
Sangwon Kim and
Dong Kyu Kim
Applied Energy, 2025, vol. 383, issue C, No S0306261925001278
Abstract:
In this study, a serial electrochemical hydrogen compressor (EHC) stack was designed to compress hydrogen gas to hundreds of bars. The operating parameters were examined to analyze optimal performance. First, a serial stack was designed to enable the EHC to operate at pressures exceeding hundreds of bars. The circular design of the stack was chosen specifically to prevent hydrogen leakage. A 127-μm-thick membrane was selected owing to its relatively good pressure resistance and performance. Through a serial EHC stack of 3 cells, hydrogen was pressurized over 120 bar. A parametric study showed that the pressure-ratio across the membrane barely affected the performance. Additionally, the higher the temperature and relative humidity, the better the performance. By increasing the temperature to 70 °C, the power consumption was reduced by 40 %. At 100 % relative humidity, the EHC exhibited the lowest power consumption. Finally, the performance of the serial stack was analyzed under optimal operating conditions, wherein it demonstrated an efficiency over 64 % for below 0.03 kg/day mass-flow rate of compressed hydrogen. However, efficiency decreased to 12 % at a mass-flow rate over 0.17 kg/day.
Keywords: Hydrogen; High-pressure compression; Electrochemical compressor; Stack design; Electro-osmotic drag (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001278
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125397
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().