A hybrid methodology for assessing hydropower plants under flexible operations: Leveraging experimental data and machine learning techniques
Ali Amini,
Samuel Rey-Mermet,
Steve Crettenand and
Cécile Münch-Alligné
Applied Energy, 2025, vol. 383, issue C, No S0306261925001321
Abstract:
In recent years, there's been a demand for more flexible hydropower to offset power fluctuations from intermittent renewables, leading to increased wear in turbines due to extended off-design operations and transients. The present paper proposes novel methods to analyze and assess experimental data of a hydropower plant for a better monitoring over time. Measurements are performed in a run-off-river plant with Francis turbines in Switzerland. During two experimental campaigns, high-frequency acquisitions up to 51.2 kHz are realized with more than 30 sensors while the SCADA data are collected at 10 Hz. In the physics-based analysis, statistical metrics and time-frequency decompositions are deployed to assess the operating conditions. To aggregate all information, the Vibrational Content Index is introduced, which unifies all sensors data by normalizing their frequency spectra with the Best Efficiency Point (BEP). This provides a single-value indicator of overall vibration, which is more sensitive than traditional metrics and easier to track over time. In the data-driven approach, the operating points are segmented into three clusters with distinct physical interpretations by applying dimensionality reduction algorithms with only two coded dimensions. This method correctly detects an abrupt change in the machine behavior for a slight power shift from 1.23PBEP to 1.30PBEP – due to full-load vortex self-excitation. Finally, the concept of virtual sensors is developed by corroborating the coded high-frequency experimental data with low-frequency SCADA using machine learning. The trained model uses SCADA data as input to estimate the sensors high-frequency response in real-time. This promising approach enables improved continuous monitoring without the need for permanent installations.
Keywords: Hydropower; Flexible production; Experimental data; Machine learning; Virtual sensors (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001321
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125402
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().