EconPapers    
Economics at your fingertips  
 

Personalized federated learning for household electricity load prediction with imbalanced historical data

Shibo Zhu, Xiaodan Shi, Huan Zhao, Yuntian Chen, Haoran Zhang, Xuan Song, Tianhao Wu and Jinyue Yan

Applied Energy, 2025, vol. 384, issue C, No S0306261925001497

Abstract: Household consumption accounts for about one-third of global electricity. Accurate results of household load prediction would help in energy management at both the building and the grid levels. Data-driven household load prediction methods have shown great advantages and potential in terms of accuracy. However, these methods still face challenges such as limited data for individual households, diversified electricity consumption behaviors, and data privacy concerns. To solve these problems, this paper proposes a personalized federated learning household load prediction framework (PF-HoLo), which allows personal models to learn collectively, leverages multisource data to capture diverse consumption behaviors, and ensures data privacy. In addition, the global encoder model and mutual learning are proposed to enhance the performance of the PF-HoLo framework considering imbalanced residential historical data. Ablation experiments results prove that the PF-HoLo framework could achieve significant improvements, with 13.41% Mean Square Error and 11.33% Mean Absolute Error, compared to traditional federated learning methods.

Keywords: Load prediction; Mutual learning; Personalized federated learning; Imbalanced data (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001497

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125419

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001497