Flattening the peak demand curve through energy efficient buildings: A holistic approach towards net-zero carbon
Yerbol Akhmetov,
Ekaterina Fedotova and
Martha Maria Frysztacki
Applied Energy, 2025, vol. 384, issue C, No S0306261925001515
Abstract:
This study employs a sector-coupled energy system model to co-optimise investments in the supply side, demand side, and efficiency improvements. Beginning with a novel validation exercise of 2023, we demonstrate that the model can accurately reproduce the energy mix with an error of less than 5%. This approach incorporates often-neglected energy carriers, such as coal, gas, and nuclear, providing a holistic view of the current energy landscape. The analysis focuses on the impact of energy efficiency measures and building renovations on seasonal peak heating demand in Europe, featuring a pathway study that examines carbon emission targets for 2030, 2040, and 2050, while incorporating a new focus on efficiency improvements and demand-side response for the heating sector. Results indicate that reducing peak heating demand by up to 49% is cost-optimal and can facilitate annual reductions of 0.2 billion tons of greenhouse gas emissions by 2030, exceeding current emissions targets by 10%. Additionally, the findings suggest potential savings of €44.2 billion in distribution grid investments and a 75% decrease in transmission grid congestion. The study highlights that lowering peak demand could alleviate the need for significant investments in renewable energy infrastructure, potentially eliminating the requirement for 600 GW of onshore wind and 872 GW of solar PV capacity. Furthermore, optimising transmission and supply investments could lead to lower electricity prices, improving equity in pricing across European countries and significantly reducing energy bills for households and industries. Overall, the research underscores the critical role of energy efficiency and flexibility measures in achieving Europe’s decarbonisation goals while ensuring affordable energy access.
Keywords: Energy efficiency; Building renovation; Heating; Energy system modelling; Sector coupling; Optimisation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001515
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125421
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().