Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data
Emrah Dokur,
Nuh Erdogan,
Ibrahim Sengor,
Ugur Yuzgec and
Barry P. Hayes
Applied Energy, 2025, vol. 384, issue C, No S0306261925001631
Abstract:
The widespread adoption of low-carbon technologies, such as photovoltaics, electric vehicles, heat pumps, and energy storage units introduces challenges to distribution network congestion and power quality, particularly raising concerns about voltage stability. Enhanced voltage visibility in low-voltage networks is increasingly vital for active grid management, making efficient voltage forecasting tools essential. This study introduces a novel data-driven approach for forecasting node voltages in low-voltage networks with high penetration of low-carbon technologies. Using time series of power measurements from smart meter data, the study integrates an Extreme Learning Machine with the Single Candidate Optimizer to enhance computational efficiency and forecasting accuracy. The model is validated using smart meter datasets from two different low-voltage networks with low-carbon technologies and is compared with several established machine learning models. The results demonstrate that the optimization algorithm significantly improves the tuning of model parameters, achieving up to a 17-fold reduction in computation time compared to the fastest metaheuristic methods implemented. The proposed model demonstrated superior accuracy, with an average voltage deviation of 0.56%. Although the computation time per node achieved is not yet suitable for real time applications, the study shows that the optimization method significantly improves the performance of the forecasting tool.
Keywords: Distribution networks; Low carbon technologies; Machine learning; Meta-heuristic; Single candidate optimizer; Smart meter; Voltage forecasting (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001631
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125433
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().