A statistical framework for district energy long-term electric load forecasting
Emily Royal,
Soutir Bandyopadhyay,
Alexandra Newman,
Qiuhua Huang and
Paulo Cesar Tabares-Velasco
Applied Energy, 2025, vol. 384, issue C, No S0306261925001758
Abstract:
An accurate forecast of electric demand is essential for the optimal design of a generation system. For district installations, the projected lifespan may extend one or two decades. The reliance on a single-year forecast, combined with a fixed load growth rate, is the current industry standard, but does not support a multi-decade investment. Existing work on long-term forecasting focuses on annual growth rate and/or uses time resolution that is coarser than hourly. To address the gap, we propose multiple statistical forecast models, verified over as long as an 11-year horizon. Combining demand data, weather data, and occupancy trends results in a hybrid statistical model, i.e., generalized additive model (GAM) with a seasonal autoregressive integrated moving average (SARIMA) of the GAM residuals, a multiple linear regression (MLR) model, and a GAM with ARIMA errors model. We evaluate accuracy based on: (i) annual growth rates of monthly peak loads; (ii) annual growth rates of overall energy consumption; (iii) preservation of daily, weekly, and month-to-month trends that occur within each year, known as the “seasonality” of the data; and, (iv) realistic representation of demand for a full range of weather and occupancy conditions. For example, the models yield an 11-year forecast from a one-year training data set with a normalized root mean square error of 9.091%, a six-year forecast from a one-year training data set with a normalized root mean square error of 8.949%, and a one-year forecast from a 1.2-year training data set with a normalized root mean square error of 6.765%.
Keywords: Electric demand forecasting; District energy; Renewable energy technologies; Long-term load forecasting; Generalized additive model; SARIMA (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925001758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001758
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125445
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().