Detailed system modeling of a vanadium redox flow battery operating at various geographical locations
Bence Sziffer,
Martin János Mayer and
Viktor Józsa
Applied Energy, 2025, vol. 384, issue C, No S030626192500203X
Abstract:
To avoid thermal precipitation, the electrolyte temperature of vanadium redox flow batteries should be within 5–40 °C. Consequently, an online thermal management system is essential, which impacts battery efficiency. A detailed thermal analysis was performed that considered a container, inner thermal radiation, global irradiance, and the thermal relationship between the system and the ambient at eight different weather stations with different climates around the globe. To meet the safe operation threshold criteria, a hybrid thermal management system was used to minimize heating and cooling energy consumption, consisting of control dampers, cooling fans, air conditioners, and heating and cooling electrolyte flows. The simulations were performed during the coldest and hottest 10-day periods of the year to determine the necessary insulation thickness and the energy consumption of cooling and heating; the latter was only required for one location. The presented thermal management system consumes up to 11 % of the total input power in extremely hot weather conditions. The simulation results show that efficiency increases with the decrease in ambient temperature until heating becomes necessary. The presented model helps predict the efficiency at any geographical location before battery installation and evaluates the need for various heating and cooling approaches.
Keywords: Battery; Vanadium redox; Thermal network; Thermal management; Weather data; Baseline surface radiation network (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500203X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s030626192500203x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125473
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().