EconPapers    
Economics at your fingertips  
 

Machine learning assisted health status analysis and degradation prediction of aging proton exchange membrane fuel cells

Fan Zhang, Meng Ni, Shupeng Tai, Bingfeng Zu, Fuqiang Xi, Yangyang Shen, Bowen Wang, Zhikun Qin, Rongxuan Wang, Ting Guo and Kui Jiao

Applied Energy, 2025, vol. 384, issue C, No S0306261925002132

Abstract: Proton exchange membrane fuel cells (PEMFCs) represent a significant application scenario for hydrogen energy and an important sector in achieving net-zero carbon emission. Prognostics and health management are crucial for enhancing their durability and reducing maintenance costs. This study proposes a framework for health status analysis and degradation prediction of aging PEMFCs, addressing the challenge of accurately identifying internal parameter states faced by current life prediction methods. Six aging factors are incorporated into the developed PEMFC mechanism model to characterize its intricate degradation process. The variations in these factors over a 3750-h experimental period are then estimated using the Particle Filtering method. Results demonstrate a notable reduction in the electrochemical surface area, decreasing from 5.76 m2 to 4.08 m2, accompanied by a significant increase in leakage current to nearly 6 A m−2. These findings indicate substantial degradation of both the catalyst layer and membrane. Furthermore, ionic and contact resistances have increased as a result of reduced membrane conductivity and bipolar plate corrosion, respectively. The mass transport capacity has diminished, leading to an elevated concentration loss within the cell. Subsequently, the Transformer model is employed to forecast future changes in the aging factors and realize the degradation prediction over the next 1000 h. The effectiveness of the proposed method is fully validated under various conditions, with the average prediction error less than 4 %, which demonstrates higher long-term prediction accuracy compared to previous studies. This study provides an effective framework for the health management of PEMFCs and facilitates their widespread commercialization.

Keywords: Proton exchange membrane fuel cell; Durability analysis; Health status analysis; Degradation prediction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002132

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125483

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002132