Internal and external coordinated distributionally robust bidding strategy of virtual power plant operator participating in day-ahead electricity spot and peaking ancillary services markets
Wanying Li,
Fugui Dong,
Zhengsen Ji and
Peijun Wang
Applied Energy, 2025, vol. 386, issue C, No S0306261925002442
Abstract:
Virtual power plant operators (VPPO) must consider external markets and internal members' coordination issues when bidding decisions and minimize the loss of benefits from wind and PV uncertainty. This study first clarifies the internal and external coordinated distributionally robust (DR) bidding decision process for VPPO participation in the day-ahead electricity spot and peaking ancillary services markets. Secondly, a fuzzy set based on the Wasserstein distance for determining the forecast error of wind and photovoltaic output was used to establish a two-layer optimization model for the VPPO internal and external coordinated DR bidding decision. The upper level is the VPPO external market DR bidding model, and the lower level is the master-slave game bidding model with the VPPO as the leader and controlled distributed power, flexible load, and energy storage (ES) as the followers. Finally, the genetic algorithm with elite strategy and Gurobi solver combining method was used to optimize the bidding strategy of VPPO. The analysis of the algorithm shows that the proposed method gives an optimized solution for VPPO's bidding in the external market, and the interests of both VPPO and internal members are enhanced at the same time. The comparative analysis of multiple scenarios found that wind power forecast error has a greater impact on VPPO's profit than PV. When the unit cost of ES drops to a certain level (200–300 yuan/MW·h), the cost of ES has less impact on the VPPO. The price of the day-ahead electricity spot market had a tremendous impact on VPPO's profits, and when the price of electricity fell by 15 %, VPPO's profits fell by 38.63 %, and VPPO's use of ES declined dramatically.
Keywords: Virtual power plant; Electricity spot market; Peaking ancillary services; Distributionally robust optimization; Bidding strategy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002442
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002442
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125514
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().