Aging diagnostics in lithium-ion batteries with differential mechanical measurements
Davide Clerici,
Francesca Pistorio and
Aurelio Somà
Applied Energy, 2025, vol. 386, issue C, No S0306261925002545
Abstract:
This work investigates how the mechanical response of lithium-ion batteries evolves with aging and demonstrates how mechanical measurements can be used to estimate degradation mechanisms, presenting interesting advantages over traditional voltage-based methods. A lithium cobalt oxide-graphite battery was cycled over 1,000 times to a state of health of 70%, with periodic performance tests measuring capacity, resistance, voltage, temperature, and deformation during the charge/discharge cycles. The deformation measurements can be distinguished into a reversible component (expansion during charge recovered with the shrinkage during discharge) and an irreversible component (increase of the battery thickness through aging).
Keywords: Lithium-ion batteries; Aging test; LAM and LLI; Irreversible deformation; Degradation mechanisms (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002545
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002545
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125524
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().