OR-AGENT framework – Architecting electrified heavy-duty drayage applications
Vivek A. Sujan,
Ruixiao Sun and
Isabelle Snyder
Applied Energy, 2025, vol. 386, issue C, No S0306261925002703
Abstract:
The widespread adoption of zero-emission vehicles in heavy-duty (HD) commercial freight transportation faces considerable technoeconomic challenges. For heavy-duty trucks, ensuring high uptime, cost parity with diesel, and safety standards is especially critical as these vehicles operate over long distances with heavy loads, where any downtime or off-nominal behaviors significantly impacts logistics, productivity, and the total cost of ownership. Unlike traditional diesel refueling, BEV charging infrastructure must be co-optimized with vehicle deployment, operational demands, and grid capacity to ensure cost-effective and reliable freight operations. However, the lack of a standardized ownership and service model has led to a fragmented approach—where commercial vehicle operators may invest in, own, and maintain both vehicle/batteries and charging/energy infrastructure. This disconnect may exclude energy service providers from the equation, forcing fleet operators to explore ‘behind-the-fence’ energy solutions that increase capital investment, operational downtime, overhead costs, and, in some cases, net carbon emissions. To address these issues, this study introduces OR-AGENT (Optimal Regional Architecture Generation for Efficient National Transport), a comprehensive modeling framework that integrates powertrain architectures, charging infrastructures, and energy backbone systems into a cohesive strategy. In this paper, OR-AGENT is applied to develop an interconnected systems architecture for energy efficiency and resiliency enhancement of heavy-duty drayage vehicles at the Port of Savannah, GA. This framework showcases an interconnected systems approach to electrifying heavy-duty drayage vehicles at the Port of Savannah, GA. The study assessed BEVs with 400–1200 kWh battery capacities, accounting for seasonal variations in weather and freight routing. A diverse charging mix (150 kW–1250 kW) was evaluated alongside grid capacity constraints, cost, and carbon intensity analysis, leading to the development of a strategic microgrid/Distributed Energy Resources (DER) deployment architecture to ensure a reliable and sustainable transition. However, the findings also highlight the need for alternative zero-emission solutions for remaining trips, such as larger batteries, electrified roadways, hydrogen powertrains, or net-zero emission fuels. The findings are incorporated into a Total Cost of Ownership (TCO) model to identify optimal architectures for an interconnected electrified ecosystem.
Keywords: Commercial vehicles; Electrification infrastructure; Optimization; Drayage; Interconnected systems TCO (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002703
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002703
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125540
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().