EconPapers    
Economics at your fingertips  
 

Quantitative investigation of internal polarization in a proton exchange membrane water electrolyzer stack using distribution of relaxation times

Jian Zuo, Nadia Yousfi Steiner, Zhongliang Li and Daniel Hissel

Applied Energy, 2025, vol. 386, issue C, No S0306261925002739

Abstract: Proton exchange membrane water electrolyzer (PEMWE) is a promising technology for hydrogen production due to its ability to operate at high currents, compact design, and high produced hydrogen purity. However, the high cost and limited durability challenges must be addressed to advance the commercialization of PEMWEs. Accessing the internal polarization processes is crucial to understanding the performance of PEMWEs and guiding their design and operation. In practice, the output voltage amplitude on a specific current value is often considered a performance indicator. However, PEMWEs are complex systems with multiple polarization processes that are inaccessible using global indicators such as voltage. We propose a distribution of relaxation times (DRT) based approach to overcome this challenge. DRT is a model-free method that deconvolutes the electrochemical impedance spectroscopy data into a series of relaxation times, corresponding to different internal polarization processes. The results show that the internal polarization processes of the PEMWE can be decomposed into four peaks, corresponding to proton transport in the ionomer of catalyst layer, charge transfer during oxygen evolution reaction and hydrogen evolution reaction, and mass transport. The contribution of these processes and high-frequency resistance (HFR) to the overall overpotential losses are further quantified, which indicates that HFR (79.4%) and charge transfer (16.4%) are the two dominant factors. Finally, the influence of operating temperature and cathode pressure on the performance of the PEMWE is quantified using the proposed approach. This approach can be generalized to identify the degradation root cause of PEMWEs which can guide material enhancement and operation optimization to improve the efficiency and durability of PEMWEs.

Keywords: Proton exchange membrane water electrolyzer; Electrochemical impedance spectroscopy; Distribution of relaxation times; Polarization process; Oxygen evolution reaction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002739

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125543

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002739