Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review
Sebastian Zainali,
Silvia Ma Lu,
Álvaro Fernández-Solas,
Alejandro Cruz-Escabias,
Eduardo F. Fernández,
Tekai Eddine Khalil Zidane,
Erlend Hustad Honningdalsnes,
Magnus Moe Nygård,
Jonathan Leloux,
Matthew Berwind,
Max Trommsdorff,
Stefano Amaducci,
Shiva Gorjian and
Pietro Elia Campana
Applied Energy, 2025, vol. 386, issue C, No S0306261925002880
Abstract:
Agrivoltaic systems combine food production and solar energy conversion on the same land, offering a dual-use approach to address land use concerns in renewable energy development. One of the main research and market challenges for agrivoltaic systems is the ability to predict food and energy yields prior to installation. The photovoltaic modules reduce solar irradiation on the ground, altering the energy balance at the ground and crop levels, affecting thus evapotranspiration and photosynthesis. The photovoltaic modules also influence local rain distribution and wind patterns, creating a microclimate that impacts both crop production and photovoltaic efficiency. The need to evaluate these effects and their impact on crop growth before installation is underscored by the recent implementation of new standards, guidelines, and regulations governing agrivoltaic systems in various regions. This study provides a critical review of existing research with a focus on the modelling, simulation, and optimisation of agrivoltaic systems. It highlights recent advancements in simulating and optimising the design of agrivoltaic systems through integrated simulations of shading, microclimates, electrical performance, and agricultural productivity. This study highlights the critical role of optimised light distribution in enhancing both crop yields and electricity production within agrivoltaic systems. However, the diversity of modelling approaches from the PV and agricultural sectors, coupled with the absence of standardised benchmarks, complicates the selection of appropriate models for specific systems and conditions. Future research should prioritise the development of standardised benchmarks to enable consistent comparisons across models, facilitating a better understanding of trade-offs between computational efficiency, interpretability, and accuracy. Collaborative efforts, publicly available datasets, and benchmarking initiatives are essential for validating models across diverse agrivoltaic configurations and regions.
Keywords: Agrivoltaics; Modelling; Policy; Sustainability; Microclimate; Shading; Crop (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925002880
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002880
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125558
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().