EconPapers    
Economics at your fingertips  
 

Safe multi-agent deep reinforcement learning for decentralized low-carbon operation in active distribution networks and multi-microgrids

Tong Ye, Yuping Huang, Weijia Yang, Guotian Cai, Yuyao Yang and Feng Pan

Applied Energy, 2025, vol. 387, issue C, No S0306261925003393

Abstract: Due to fundamental differences in operational entities between distribution networks and microgrids, the equitable allocation of carbon responsibilities remains challenging. Furthermore, achieving real-time, efficient, and secure low-carbon economic dispatch in decentralized multi-entities continues to face obstacles. Therefore, we propose a co-optimization framework for Active Distribution Networks (ADNs) and multi-Microgrids (MMGs) to improve operational efficiency and reduce carbon emissions through adaptive coordination and decision-making. To facilitate decentralized low-carbon decision-making, we introduce the Spatiotemporal Carbon Intensity Equalization Method (STCIEM). This method ensures privacy and fairness by processing local data and equitably distributing carbon responsibilities. Additionally, we propose a non-cooperative optimization strategy that enables entities to optimize their operations independently while considering both economic and environmental interests. To address the challenges of real-time decision-making and the non-convex nature of low-carbon optimization inherent in traditional approaches, we have developed the Enhanced Action Projection Multi-Agent Twin Delayed Deep Deterministic Policy Gradient (EAP-MATD3) algorithm. This algorithm enhances the actor's objective to address the actor-critic mismatch problem, thereby outperforming conventional safe multi-agent deep reinforcement learning methods by generating optimized actions that adhere to physical system constraints. Experiments conducted on the modified IEEE 33-bus network and IEEE 123-bus network demonstrate the superiority of our approach in effectively balancing economic and environmental objectives within complex energy systems.

Keywords: Active distribution network; Carbon emission allocation; Low-carbon economic operation; Multi-microgrid operation; Safe multi-agent deep reinforcement learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925003393
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003393

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125609

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-25
Handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003393