EconPapers    
Economics at your fingertips  
 

Achieving 100 % renewable e-methanol incorporating biomass-fired generation: A techno-economic study

Zhipeng Yu, Jin Lin, Feng Liu, Yingtian Chi, Yonghua Song and Fengqi You

Applied Energy, 2025, vol. 389, issue C, No S0306261925003782

Abstract: Converting renewable hydrogen (H2) and carbon dioxide (CO2) into methanol is a promising pathway for decarbonizing the chemical industry. The produced renewable methanol can also be used for decarbonizing other sectors, such as shipping and power systems. Achieving 100 % renewable methanol requires both H2 and CO2 sources to be “renewable”. Currently, CO2 from direct air capture (DAC) or biomass can be regarded as the renewable one. However, DAC’s high cost and the challenges in scaling up biomass gasification hinder their practical application in large-scale renewable methanol production. To address the issues above, this paper proposes a novel 100 % renewable e-methanol synthesis technical route (MSTR) incorporating the mature biomass-fired generation (denoted as MSTR-3). Two biomass gasification-based MSTRs (denoted as MSTR-1 and MSTR-2) are introduced as the benchmarks. A fractional programming (FP)-based optimization framework is established to evaluate the techno-economic levels of different MSTRs, with the levelized cost of methanol (LCOM) used as the objective function. The results indicate that the proposed MSTR-3 can trade off the cost and the resource utilization, avoiding the high curtailment of renewable energy sources (RES) and low utilization of carbon from biomass observed in MSTR-1 and MSTR-2. Furthermore, combining inflexible MSTR-2 with flexible MSTR-3 can reduce LCOM from 4310 RMB111 RMB ≈ 0.1364 USD (based on the exchange rate as of January 12, 2025)./t (588 USD/t) to 3849 RMB/t (525 USD/t), demonstrating that coordinated planning of flexible and inflexible loads is an effective strategy for achieving both economic benefits and improved resource utilization.

Keywords: Methanol synthesis technical routes (MSTR); Biomass-fired generation; Techno-economic assessment; 100 % renewable; Synergistic effect (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925003782
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s0306261925003782

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125648

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925003782