Simultaneous hydrogen generation and organic oxidation in low-temperature electrolyzers
Zuzanna Bojarska,
Maria Jarząbek Karnas,
Agata Godula-Jopek,
Sławomir Mandrek and
Łukasz Makowski
Applied Energy, 2025, vol. 389, issue C, No S0306261925004271
Abstract:
Low-temperature electrolyzers play an essential role in various electrochemical and industrial processes, particularly in sustainable energy storage and conversion. Traditionally, the anodic reaction is oxygen evolution, which demands high working potentials and involves significant operational costs. This review explores a compelling approach to mitigate these challenges by using alternative fuels. Through a comprehensive review of the literature, the subject of which was the electrolysis of alcohols, amines, and biomass derivatives. This study explains the potential of integrating non‑oxygen-evolving reactions with hydrogen evolution reactions to mitigate the drawbacks associated with conventional electrolysis. By diversifying the electrochemical approaches, alternative reactions offer the prospect of lowering the working potential, thereby reducing the energy input and overall cost. Furthermore, strategically selecting catalysts can enhance reaction kinetics and improve the efficiency of hydrogen production. This review underscores the importance of considering technical performance and economic viability in the design and operation of electrolyzer systems.
Keywords: Proton exchange membrane electrolysis; Anion exchange membrane electrolysis; Oxygen evolution reaction; Hydrogen evolution reaction; Organic electrooxidation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925004271
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004271
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125697
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().