Resilient mobile energy storage resources-based microgrid formation considering power-transportation-information network interdependencies
Jian Zhong,
Chen Chen,
Haochen Zhang,
Wentao Shen,
Zhong Fan,
Dawei Qiu and
Zhaohong Bie
Applied Energy, 2025, vol. 389, issue C, No S0306261925004465
Abstract:
The advancement of smart city technologies has deepened the interactions among power, transportation, and information networks (PTINs). Current mobile energy storage resource (MESR) based power distribution network (PDN) restoration schemes often overlook the interdependencies among PTINs, thus hindering efficient load restoration. This paper outlines the key interacting factors within PTINs, including power supply demand, traffic efficiency, communication coverage, electric vehicle (EV) deployment capability, and PDN controllability. We further develop a PTIN-interacting model to demonstrate the ‘chained recovery effect’ in MESR-based restoration. Building on this, we propose a rolling optimization load restoration scheme utilizing EVs, mobile energy storage systems (MESSs), and unmanned aerial vehicles (UAVs), to restore the power supply to loads. The algorithm optimizes the load restoration schemes by evaluating the criticality of power loads, transportation, and communication nodes and their interdependencies. It further dynamically recalculates subsequent restoration schemes based on the varying states of PTINs during extreme events and the recovery impacts of prior operations on the PTINs, using a rolling horizon. This approach adapts to changing conditions, improving load restoration, enhancing the solution’s adaptability to uncertainties during the restoration process, and increasing its practicality. Additionally, a PTIN-integrated co-simulation platform is developed to verify the effectiveness of the restoration methods. Case studies conducted on the platform show significant improvements in both the restored load capacity and restoration speed of the proposed scheme.
Keywords: Power-transportation-information network; Vehicle-to-grid (V2G); Distribution network restoration; Cyber-physical interdependencies; Resilience (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925004465
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004465
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125716
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().