A physics-guided self-adaptive chiller sequencing controller of enhanced robustness and energy efficiency accommodating measurement uncertainties
Wenke Zou,
Hangxin Li,
Dian-ce Gao and
Shengwei Wang
Applied Energy, 2025, vol. 389, issue C, No S0306261925004489
Abstract:
For multi-chiller systems commonly applied in commercial buildings, a reliable chiller sequencing control strategy makes a crucial contribution to ensure robust and energy-efficient operation. However, the commonly used chiller sequencing control strategy often deviates from expectations significantly due to common sensor measurement uncertainties encountered in practice. To address this problem, this study proposes a physics-guided chiller sequencing control strategy that improves the system's robustness and energy efficiency by adaptively adjusting chiller switching thresholds to accommodate sensor measurement uncertainties. First, a physics-guided fault detection and diagnosis (FDD) supervisor is developed to diagnose the fault types associated with each chiller-ON event under the corresponding switching thresholds. Subsequently, based on the identified fault type, a self-adaptive switching threshold supervisor is developed to adaptively adjust the chiller switching thresholds (i.e., key parameters for determining the chiller stages) for mitigating the adverse impacts resulting from the sensor measurement uncertainties. The test results show that the proposed control strategy can significantly enhance the robustness under negative measurement uncertainties and save the total system energy consumption by up to 7.46 % without sacrificing robustness under positive measurement uncertainties.
Keywords: Chiller sequencing control; Robustness; Energy efficiency; Fault detection and diagnosis; Measurement uncertainties (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925004489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004489
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125718
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().