A review of wind energy harvesting technology: Civil engineering resource, theory, optimization, and application
Bo Su,
Tong Guo and
Md. Mahbub Alam
Applied Energy, 2025, vol. 389, issue C, No S030626192500501X
Abstract:
The structural performance of civil infrastructure deteriorates over time, highlighting the need for data from wireless sensor networks installed on tall buildings, tunnels, and long-span bridges for effective maintenance. However, ensuring a sustainable power supply for these structural health monitoring systems remains a significant challenge. A promising solution is the development of self-powered wireless sensor networks using micro harvesters that harness ambient wind energy, particularly through flow-induced vibrations. This area has recently garnered considerable attention, particularly due to advancements in miniaturized wind turbines. This paper comprehensively reviews the latest advancements and research trends in wind energy harvesting technologies relevant to civil infrastructure. First, we investigate wind resources from high-rise buildings, bridges, and tunnels associated with high-speed trains, summarizing their characteristics and optimization strategies for efficient energy harvesting, in addition to an analysis of wind field and power generation. Next, we outline the fundamental energy conversion mechanisms for wind harvesting, which are crucial for designing and developing new energy harvesters. The characteristics of the three main energy conversion mechanisms, including electromagnetic generator (EMG), triboelectric nanogenerator (TENG), and piezoelectric conversion are investigated, along with their hybrid methods. Further, we also delve into various wind-induced vibrations, including vortex-induced vibrations, flutter, galloping, and wake-induced vibrations, along with their respective coupling mechanisms. Additionally, we provide a comparative analysis of some efficient harvesters, including their operational principles and quantitative analysis of their start-up velocity, outpour voltage, and power. In particular, several representative chips are reviewed, with a qualitative analysis provided as a reference for the circuit design of self-powered wireless sensors. Finally, we address methods for energy conversion and storage methods with low power consumption for structural health monitoring systems, supported by relevant case studies, including hybrid prototypes of small wind turbines to power monitoring sensors. These include a hybrid prototype of small wind turbines for powering monitoring sensors in railway tunnels and an innovative wind harvester, the “Inverted Flag” designed to power a temperature sensor. This work promotes a comprehensive understanding of energy harvesting technologies in civil engineering and supports the development of practical, self-powered monitoring systems for infrastructure.
Keywords: Wind energy harvesting; Flow-induced vibration; Civil infrastructure; Structural health monitoring; Small wind turbine (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500501X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s030626192500501x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125771
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().