EconPapers    
Economics at your fingertips  
 

Role of electrolyte in the polysulfide shuttle effect and long-term cycling performance in cathodes for LiS batteries based on sulfurated polyisoprene

Sadananda Muduli, Jesús M. Blázquez-Moreno, Almudena Benítez and Michael R. Buchmeiser

Applied Energy, 2025, vol. 389, issue C, No S0306261925005082

Abstract: In this study, we present a one-step and scalable synthesis of sulfurated-poly(isoprene) (SPI) containing 48 wt% covalently bound sulfur that avoids the formation of long-chain polysulfides and the polysulfide shuttle effect. Furthermore, a comprehensive comparative electrochemical study was conducted using three electrolytes, i.e. LiPF6 in ethylene carbonate (EC): diethyl carbonate (DEC), LiPF6 in EC: DEC with the addition of 10 wt% of fluoroethylene carbonate (FEC) and LiTFSI in 1,3-dioxolane (DOL): 1,2-dimethoxyethane (DME) with 0.1 M LiNO3. LIPF6/FEC electrolyte-based cells allow for exceptional capacity at high rates up to 5C, with extraordinary stability over 1100 cycles. This may be attributed to the formation of both a stable cathode electrolyte interface (CEI) and solid electrolyte interphase at the anode (SEI). Furthermore, galvanostatic intermittent titration (GIT) and Randles-Sevcik diffusion studies are conducted to investigate the influence of ionic radius and conductivity of PF6− and TFSI− anions on Li+-ion diffusion, as well as the formation of fluorinated interlayers between the electrode and electrolyte, as revealed by post-mortem analysis. The kinetics of the electrochemical mechanisms for the LiPF6/FEC-based electrolyte are also analyzed, demonstrating an exceptionally high diffusive contribution at elevated rates. In view of the elimination of the shuttle effect and its exemplary electrochemical performance in conjunction with the LiPF6/FEC-based electrolyte, SPI is proposed as a potential host material for use as cathodes in LiS batteries.

Keywords: Sulfurized poly(isoprene); Li-S battery cathode; Cycling stability; Charge storage contribution; Diffusion study (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925005082
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005082

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125778

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005082