Modelling and analysis of V-shaped bifacial PV systems for agrivoltaic applications: A Python-based approach for energy optimization
Stefania Guarino,
Alessandro Buscemi,
Christian Chiaruzzi and
Valerio Lo Brano
Applied Energy, 2025, vol. 389, issue C, No S030626192500515X
Abstract:
Agrivoltaic systems integrate photovoltaic (PV) energy production with agricultural activities, addressing the critical challenges of land use optimization and sustainable energy generation in the context of climate changes and food security. These systems are pivotal in offering a promising solution in mitigating the environmental and social impacts of utility-scale PV installations, such as habitat disruption and competition with agricultural land. This study evaluates a patented V-shaped bifacial photovoltaic system with a single-axis solar tracking, designed to optimize energy capture but also to minimize shading effects on crops like vineyards. A custom Python-based algorithm using PVlib was developed to simulate the performance of the system, accounting for mutual shading, multiple solar radiation reflections, and dynamic tilt adjustments. Simulations conducted for Palermo, Italy, revealed that the system collects 5.2 % less solar irradiation than traditional side-by-side configurations but achieves an annual energy output of 2089.3 kWh per pair of panels, along with 24 % reduction in land use. These results highlight the system capability to optimize spatial efficiency while maintaining high energy production. The novelty of this work lies in its tailored simulation approach, addressing the unique geometry and operational dynamics of the V-shaped configuration, and its potential adaptability to diverse agrivoltaics scenarios. Unlike existing tools and methodologies in the literature, this work introduces a customized Python-based model specifically designed to analyse the performance of this innovative structure, which is of recent conception and lacks precedent in both academic studies and commercial software solutions. By advancing the methodological framework for integrating renewable energy with agriculture, this study contribute to the broader goals of sustainable development and climate resilience.
Keywords: Agrivoltaic systems; Bifacial photovoltaic modules; Single-axis tracking system; Land-use optimisation; Energy analysis; Python; PVlib; Solar tracking algorithm; V-shaped (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500515X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:389:y:2025:i:c:s030626192500515x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125785
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().