A novel energy-efficient automated regenerative braking system
Hamed Faghihian and
Arman Sargolzaei
Applied Energy, 2025, vol. 390, issue C, No S0306261925004763
Abstract:
Electric vehicles (EVs) are widely recognized as the future of mobility. Maximizing the energy efficiency of EVs reduces total energy consumption in transportation and addresses challenges related to future EV adoption. Regenerative braking is one of the most promising features for increasing the range and efficiency of EVs. However, the current implementation of regenerative braking relies on human drivers, which is not efficient. Additionally, these systems are not designed to provide efficient torque to maximize the energy efficiency of EVs. To address these challenges, this paper proposes an Eco-Regen system which is a novel, energy-efficient automated regenerative braking system (RBS) to increase the energy efficiency of EVs. The proposed system incorporates a continuously variable gear ratio to maximize recaptured energy during braking maneuvers, with a fuzzy logic controller designed to select the optimum gear ratio in the Eco-Regen system. Human driver behavior was measured to investigate its impact on total recaptured energy during braking, and the effect of average human driver behavior was also studied. Simulation-in-the-loop (SIL) and Hardware-in-the-loop (HIL) results show that the Eco-Regen system can significantly increase the total recaptured energy, by up to 61 % compared to an average human driver, especially in scenarios where vehicles operate in environments with frequent stops, such as urban areas or transit buses.
Keywords: Energy efficiency; Automated regenerative braking system; Electric vehicles (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925004763
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:390:y:2025:i:c:s0306261925004763
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125746
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().