EconPapers    
Economics at your fingertips  
 

Multi-objective and multi-stage capacity planning for low-carbon iron and steel industry empowered by wind-gas‑hydrogen energy

Haotian Wu, Deping Ke, Lin Song, Jian Xu, Siyang Liao and Lei Wang

Applied Energy, 2025, vol. 390, issue C, No S0306261925005239

Abstract: The decarbonization transition of the iron and steel industry (ISI) necessitates an overshooting of its energy mix from a predominantly coal-consuming to a predominantly renewable energy-consuming one, including wind and hydrogen. This also presents novel challenges to the energy economy, efficiency, and flexibility of low-carbon ISI. To overcome this challenge, this paper proposes a multi-objective and multi-stage planning (MSP) model for ISI coupled with multi-energy forms. The MSP strategy, which considers the stage-adjustable hydrogen proportion (H2-CO ratio) used in iron production, is proposed as a means of fully considering energy development at different stages to make optimal equipment configuration. Moreover, a multi-objective capacity planning model is developed to establish energy economic, efficiency and flexibility objectives based on the actual energy policies implemented in China. Finally, an enhanced AUGMECON-R algorithm (EARA) is devised to address the bilinear constraints inherent to the model, thereby facilitating an efficient solution process. The simulation results substantiate the efficacy of the MSP strategy, illustrate the substantial value of the stage-plannable H2-CO ratio for ISI's economy and flexibility enhancement, and demonstrate that EARA can markedly enhance solution efficiency while maintaining an acceptable level of accuracy.

Keywords: Low-carbon iron and steel industry; Renewable hydrogen energy; Multi-objective and multi-stage planning; Energy and carbon policies; Enhanced AUGMECON-R algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925005239
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005239

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125793

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005239