Enhancing solar tower competitiveness with star-shaped receivers
Giancarlo Gentile,
Francesco Stefano Carli,
Matteo Speranzella,
Marco Binotti,
Michael E. Cholette and
Giampaolo Manzolini
Applied Energy, 2025, vol. 391, issue C, No S0306261925005744
Abstract:
Star-shaped receivers represent a novel receiver concept to increase performance and reduce cost of solar tower plants, boosting the competitiveness of these renewable and dispatchable power production technology. This article presents a comprehensive analysis of star-shaped receivers, which, due to their unique geometry, provide lower optical and thermal losses, increased lifetime, and reduced construction and maintenance costs. The article describes methodologies for assessing optical and thermal performance, pressure drop, creep-fatigue lifetime, wind load, and capital and operating costs of star receivers. Specifically, optical analysis is performed using ray-tracing simulation tools while tailored numerical models are implemented in MATLAB to investigate thermal, mechanical and economic aspects. The proposed methods allow to estimate the maximum receiver size that can withstand wind loads for a given location and optimize the design of this innovative receiver through a constrained parametric procedure based on Levelized Costs of Heat (LCOH) minimization. Results show that the cost of the star receiver can be up to 75 % cheaper than the corresponding Gemasolar-like cylindrical receiver with the same design thermal power. This cost reduction results from the adoption of fewer number of tubes and less expensive material as 800H instead of H230. Overall, the optimal plant configuration has a higher thermal energy collected by around 5 % annually, resulting in a 30 % reduction in LCOH with respect to Gemasolar-like cylindrical receiver case.
Keywords: Star receiver; Solar tower; Optimization; Concentrated solar power; Creep-fatigue (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925005744
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:391:y:2025:i:c:s0306261925005744
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125844
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().