Off-grid green hydrogen production and liquefaction system driven by renewable energy and LNG cold energy: A comprehensive 4E analysis and optimization
Manfeng Li,
Juncheng Yang,
Mehdi Mehrpooya,
Zhanjun Guo and
Tianbiao He
Applied Energy, 2025, vol. 392, issue C, No S0306261925006129
Abstract:
To address the growing demand for sustainable hydrogen production and reduce the carbon footprint of hydrogen liquefaction, an off-grid system integrating renewable energy, liquefied natural gas cold energy and organic Rankine cycle is proposed. The renewable energy generation and proton exchange membrane electrolyzer hydrogen production processes are modeled in TRNSYS, while the hydrogen liquefaction and the organic Rankine cycle are simulated using ASPEN HYSYS. The Particle Swarm Optimization algorithm is used to optimize the hydrogen liquefaction process by evaluating various configurations based on energy efficiency, environmental impact, exergy efficiency, and economic feasibility. The optimization results show that the system achieves a reduction in specific energy consumption from 7.948 kWh/kgLH2 to 6.937 kWh/kgLH2. Within the 4E analytical framework, Case 10 achieves the highest energy efficiency at 23.55 %, whereas Case 1 demonstrates the most significant pollutant reduction, decreasing emissions by 2.901 % relative to the reference system. Case 11 exhibits the best exergy efficiency at 26.61 %, while Case 8 optimizes economic viability with the lowest initial investment, featuring a dynamic payback period of 3.56 years and a levelized hydrogen production cost of 1.1 $/kgLH2. From a dual-criterion perspective, Case 8 outperforms others in life cycle cost and emission reduction performance, while Case 10 maintains superior energy and exergy efficiency. Significantly, Case 5 emerges as the Pareto-optimal solution under equally weighted multi-criteria evaluation, balancing all performance indices with minimal trade-off compromise. This integrated system provides a promising solution for utilizing offshore renewable energy in hydrogen production, offering a low-emission and sustainable fuel pathway.
Keywords: Renewable energy integration; Hydrogen liquefaction; 4E analysis; LNG cold energy utilization; Sustainable hydrogen production (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925006129
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006129
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125882
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().