A data-physics hybrid-driven layout optimization framework for large-scale wind farms
Peiyi Li,
Yanbo Che,
Anran Hua,
Lei Wang,
Mengxiang Zheng and
Xiaojiang Guo
Applied Energy, 2025, vol. 392, issue C, No S0306261925006385
Abstract:
The global trend of wind energy utilization moves towards building large-scale and remotely-located wind farms, while strategic layout optimization is crucial to improving the power generation of wind farms. However, large-scale wind farm layout optimization (WFLO) faces challenges due to complicated calculations involving the high-dimensional decision variables and the need to trade-off between wake model accuracy and efficiency. To address these issues, this paper proposes a novel data-physics hybrid-driven framework for layout optimization of large-scale wind farms. This framework attempts to integrate physical equations with variable parameters to guide the modeling of wake effects and further facilitate the layout optimization process. Specifically, the physics-informed dual neural network (PIDNN) model is proposed to estimate the wind velocity. This model incorporates a variable thrust coefficient into the Navier–Stokes equations through dual neural networks. Moreover, the gene-targeted differential evolution (GTDE) algorithm is employed to optimize the wind farm layout, which is particularly designed for large-scale optimization problems. Simulation results demonstrate that the proposed PIDNN can estimate wake velocity effectively. Furthermore, the proposed optimization framework outperforms competing methods, achieving the highest power generation.
Keywords: Wake model; Wind farm layout optimization; Physics-informed dual neural network; Gene targeting differential evolution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925006385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006385
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125908
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().