Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems
Yuhan Li,
Zhifeng Zheng,
Yangge Guo,
Xiaojing Cheng,
Xiaohui Yan,
Guanghua Wei,
Shuiyun Shen and
Junliang Zhang
Applied Energy, 2025, vol. 392, issue C, No S0306261925006452
Abstract:
Thermal management control is of great significance to the performance and durability of proton exchange membrane fuel cell (PEMFC), which is challenging under large-load fluctuations due to its strong nonlinearity and variable time delay. Therefore, we employ cascade internal model control (IMC) to achieve better tracking performance under wide-range load variation and robustness against delayed disturbances, combining with current feedforward to reduce the time delay. Additionally, a double inner-loop cascade IMC for both thermostat and fans is proposed here to further improve the robustness, and a modified Smith predictor is introduced to ameliorate time-delay disturbance rejection. Firstly, the responsiveness and robustness of these proposed control strategies are evaluated by step tests and white noise disturbance tests, respectively. The results show that the cascade IMC of thermostat with the current feedforward control of fans (CS3) has the best responsiveness under load steps due to the time-delay reduction by current feedforward, while the double-inner loop cascade IMC with modified Smith predictor (CS2) exhibits the best responsiveness under ambient-air-temperature steps as well as the best robustness under either voltage interference or ambient temperature disturbances, indicating the effectiveness of its robust improvement and delayed disturbance rejection. Moreover, these control strategies are also validated under large-load fluctuation. CS3 is found to strictly keep the temperature tracking the target within ±0.6 °C, while CS2 shows a slightly worse convergence but presents the strongest temperature tracking under large-load fluctuations with voltage decay and disturbances, which shows practical value in automotive PEMFC systems, especially for long-term operation.
Keywords: PEMFC; Thermal management; Large-load fluctuation; Cascade internal model control; Control strategies (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925006452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006452
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125915
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().