Accelerating device characterization in perovskite solar cells via neural network approach
Xinhai Zhao,
Chaopeng Huang,
Erik Birgersson,
Nikita Suprun,
Hu Quee Tan,
Yurou Zhang,
Yuxia Jiang,
Chunhui Shou,
Jingsong Sun,
Jun Peng and
Hansong Xue
Applied Energy, 2025, vol. 392, issue C, No S030626192500652X
Abstract:
Perovskite solar cells are promising candidates for next-generation high-efficiency photovoltaic devices, especially as top cells in tandem applications. Using a physical-based optoelectronic model, we collect big data of one hundred thousand sample size to train neural network models for efficient prediction of device performance and recombination losses. Latin hypercube sampling, Bayesian regularization, and Bayesian optimization are adopted for data preparation, model training, and optimization of the neural networks, respectively. The best neural network models achieved mean squared errors below 4×10−4 on a reserved testing dataset. The computational speed of the neural network is more than one thousand times faster than traditional optoelectronic models. As a result, fast device calibration can be conducted in twenty-four seconds. The reduced computational cost allows for efficient device characterization, parametric studies, sensitivity analysis, loss analysis, and optimization. After optimizing interface recombination in our in-house fabricated devices, we observed an experimental improvement of approximately 2 % in power conversion efficiency. Additionally, we predict theoretical power conversion efficiencies of 28.9 % and 25.5 % for perovskite solar cells with band gaps of 1.56 eV and 1.63 eV, respectively.
Keywords: Machine learning; Artificial neural network; Perovskite solar cell; Device characterization; Loss analysis; Optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500652X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s030626192500652x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125922
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().