Study on two-phase transport and performance characterization in orientational structure proton exchange membrane fuel cells at high water content
Zi Rui Guo,
Hao Chen,
Hang Guo and
Fang Ye
Applied Energy, 2025, vol. 392, issue C, No S0306261925007007
Abstract:
With advances in catalyst technology, the power of commercial fuel cells has generally enhanced, imposing higher demands on water management. Clarifying the gas-liquid flow and performance characteristics under high water content is critical for improving the dynamic stability and lifetime of the fuel cell. In this study, the evolutions of gas-liquid flow and the performance of fuel cells at high water content are investigated using water injection. Differences in gas-liquid distribution and performance between the orientational and straight channels under high water content are discussed. Results show that the liquid water distribution of the orientational channels is more uniform compared to straight channels. The orientational plate has a blocking effect on the liquid droplets, and droplets first fill the channel and then flow downstream. Water mist dissipates faster in the orientational channels after switching to high voltages due to increased gas velocity induced by the orientational plate. In the cathode, the liquid water mainly forms film flow because of the low oxygen velocity, and the droplets in the orientational channels enable rapid movement driven by the upstream droplet pushing forces. Anode water injection improves membrane wettability and cell performance, suggesting anode water injection potential as a humidification method. The orientational channel demonstrates superior water retention, with the highest performance improvement observed during upstream water injection and achieving up to 95 % net power improvement. However, cathode water injection may degrade performance due to water flooding.
Keywords: Proton exchange membrane fuel cell; Two-phase flow characteristics; High water content; Water injection humidification; Orientational plate (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007007
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.125970
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().