EconPapers    
Economics at your fingertips  
 

Multi-agent deep reinforcement learning based demand response and energy management for heavy industries with discrete manufacturing systems

Atit Bashyal, Tina Boroukhian, Pakin Veerachanchai, Myanganbayar Naransukh and Hendro Wicaksono

Applied Energy, 2025, vol. 392, issue C, No S0306261925007202

Abstract: Energy-centric decarbonization of heavy industries, such as steel and cement, necessitates their participation in integrating Renewable Energy Sources (RES) and effective Demand Response (DR) programs. This situation has created the opportunities to research control algorithms in diverse DR scenarios. Further, the industrial sector’s unique challenges, including the diversity of operations and the need for uninterrupted production, bring unique challenges in designing and implementing control algorithms. Reinforcement learning (RL) methods are practical solutions to the unique challenges faced by the industrial sector. Nevertheless, research in RL for industrial demand response has not yet achieved the level of standardization seen in other areas of RL research, hindering broader progress. To propel the research progress, we propose a multi-agent reinforcement learning (MARL)-based energy management system designed to optimize energy consumption in energy-intensive industrial settings by leveraging dynamic pricing DR schemes. The study highlights the creation of a MARL environment and addresses these challenges by designing a general framework that allows researchers to replicate and implement MARL environments for industrial sectors. The proposed framework incorporates a Partially Observable Markov Decision Process (POMDP) to model energy consumption and production processes while introducing buffer storage constraints and a flexible reward function that balances production efficiency and cost reduction. The paper evaluates the framework through experimental validation within a steel powder manufacturing facility. The experimental results validate our framework and also demonstrate the effectiveness of the MARL-based energy management system.

Keywords: Multi-agent reinforcement learning; Deep reinforcement learning; Demand response; Production scheduling; Energy management; Heavy industries (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007202
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007202

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.125990

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007202