Distributed dispatch of non-convex integrated electricity and gas systems considering AC power flow and gas dynamics
Qingju Luo,
Jizhong Zhu,
Di Zhang,
Haohao Zhu and
Shenglin Li
Applied Energy, 2025, vol. 392, issue C, No S030626192500755X
Abstract:
The coordinated operation of the integrated electricity and gas system (IEGS) produces significant economic and environmental benefits. This paper adopts the non-convex alternating current (AC) power flow and dynamic gas models to characterize the IEGS accurately and uses an improved decomposition-coordination interior point method (IDIPM) for efficient distributed solution of non-convex IEGS dispatch problems. Different from the conventional distributed algorithms, the decomposition-coordination interior point method (DIPM) is mathematically equivalent to the centralized interior point method (CIPM), which guarantees the local convergence of the non-convex distributed optimization. We improved the DIPM by modifying the Newton matrix and using Schur complement and matrix decomposition, making its solution speed faster than the DIPM and CIPM. Furthermore, the IDIPM avoids the numerical problem caused by the DIPM and is therefore more robust. The effectiveness of the IDIPM-based distributed dispatch method is verified by numerical tests on two IEGSs of different scales. In the best case, the efficiency of the IDIPM can be increased to 4 times that of the traditional CIPM.
Keywords: Integrated energy system; AC power flow; Dynamic gas; Distributed optimization; Decomposition-coordination interior point method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192500755X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:392:y:2025:i:c:s030626192500755x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().