EconPapers    
Economics at your fingertips  
 

Non-intrusive load monitoring based on process-adaptive multi-target regression and transformer-enabled two-stream input network

Xinwu Sun, Jiaxiang Hu, Weihao Hu, Di Cao, Zhe Chen and Frede Blaabjerg

Applied Energy, 2025, vol. 393, issue C, No S0306261925007767

Abstract: In multiple appliance load monitoring, variations in learning difficulty and numerical scale across target appliances can create imbalances in network parameter optimization, resulting in degraded performance for certain appliances. To this end, a tailored dynamic multi-target loss function is designed to adaptively assign rational weights for target appliances at each epoch, mitigating model bias toward specific appliances. Specifically, a global percentage error metric is employed to evaluate each appliance's performance on a unified scale, allowing dynamic weight adjustment to balance parameter optimization across appliances. This enables the proposed method to build mapping relationships and learn correlations across multiple target appliances, even in the presence of substantial differences in their usage patterns. Furthermore, a transformer-structure monitor is designed to integrate multimodal signals, combining raw data series with multi-step differential signals. This improves the model's learning capability to capture pattern changes in target appliances while enhancing robustness against anomalies. Comparative tests with state-of-the-art methods demonstrate the effectiveness of the proposed method in ensuring feasible and balanced performance across all target appliances

Keywords: Non-intrusive load monitoring; Multiple appliance monitoring; Deep learning; Multi-target loss; Global percentage error (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007767
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007767

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126046

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007767