EconPapers    
Economics at your fingertips  
 

Integration of biomass gasification and water electrolysis: Importance of sweep gas selection

Dohee Kim, Taehyun Kim, Yungeon Kim and Jinwoo Park

Applied Energy, 2025, vol. 393, issue C, No S0306261925007998

Abstract: Water electrolysis and biomass gasification have emerged as promising renewable and environmentally friendly methods for producing hydrogen, and there is growing interest in integrating these two technologies. However, the role of sweep gas, a crucial factor in overcoming challenges associated with water electrolysis, has been largely overlooked in most integrated studies. To bridge this gap, the effects of three types of sweep gases (air, oxygen, and steam) on the performance of integrated systems were evaluated in this study. The process utilizing steam as the sweep gas achieved the highest energy efficiency of 72.42 %, whereas the use of air resulted in the lowest efficiency of 70.00 %. A similar trend was observed in the exergy analysis, where the use of steam resulted in the highest exergy efficiency of 64.53 %, while air led to the lowest exergy efficiency of 62.27 %. The process using air as the sweep gas demonstrated the most cost-effective levelized cost of hydrogen (LCOH) of $1.28/kg, which was 9.0 % and 3.0 % lower than those of the processes using oxygen and steam, respectively. This study is the first to examine the influence of sweep gas types on integrated process performance, highlighting the importance of sweep gas selection. The proposed approach can be a viable alternative, as most previous studies either overlooked sweep gas or used oxygen and steam as sweep gases. These findings provide new strategies for optimizing integrated system performance and are expected to significantly contribute to the integration of green hydrogen production systems with processes other than biomass gasification.

Keywords: Biomass gasification; Water electrolysis; Sweep gas; Process integration; Energy analysis; Exergy analysis; Techno-economic analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007998
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007998

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126069

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007998