EconPapers    
Economics at your fingertips  
 

Bioinspired design strategies for high-performance Zn-MnO₂ batteries

Ramesh Bhandari

Applied Energy, 2025, vol. 393, issue C, No S0306261925008700

Abstract: In this review, we explore bioinspired structural approaches that enhance both electrochemical performance and mechanical durability in Zn-MnO₂ batteries. Specifically, we investigate nature-based mass transport methods derived from plant vascular systems and hierarchical porosity structures to optimize Zn2+ ion transport and charge storage efficiency. Additionally, bioinspired mechanical reinforcement strategies—modeled after exoskeletons, honeycomb frameworks, and nacre-like structures—improve battery electrode stability by reducing phase transition-induced cracking and capacity deterioration. This review synthesizes three key strategies for mitigating dendrite growth and interfacial instability, focusing on conductive nanomaterial integration, defect engineering, and self-healing coatings. We highlight recent advancements in biomimetic coating that accelerate ion transport and minimize overpotential losses. Furthermore, we examine bioinspired approaches to overcoming Zn-MnO₂ battery limitations, particularly through the development of hierarchical porous MnO₂ cathodes and mechanically robust Zn anodes. The findings underscore the significant impact of biomimetic designs in extending cycle life, improving energy density, and enhancing safety, thereby positioning Zn-MnO₂ batteries as viable candidates for large-scale energy storage applications.

Keywords: Bioinspired design; Zn-MnO₂ batteries; Hierarchical structures; Ion transport optimization; Mechanical stability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008700

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126140

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008700