Bioinspired design strategies for high-performance Zn-MnO₂ batteries
Ramesh Bhandari
Applied Energy, 2025, vol. 393, issue C, No S0306261925008700
Abstract:
In this review, we explore bioinspired structural approaches that enhance both electrochemical performance and mechanical durability in Zn-MnO₂ batteries. Specifically, we investigate nature-based mass transport methods derived from plant vascular systems and hierarchical porosity structures to optimize Zn2+ ion transport and charge storage efficiency. Additionally, bioinspired mechanical reinforcement strategies—modeled after exoskeletons, honeycomb frameworks, and nacre-like structures—improve battery electrode stability by reducing phase transition-induced cracking and capacity deterioration. This review synthesizes three key strategies for mitigating dendrite growth and interfacial instability, focusing on conductive nanomaterial integration, defect engineering, and self-healing coatings. We highlight recent advancements in biomimetic coating that accelerate ion transport and minimize overpotential losses. Furthermore, we examine bioinspired approaches to overcoming Zn-MnO₂ battery limitations, particularly through the development of hierarchical porous MnO₂ cathodes and mechanically robust Zn anodes. The findings underscore the significant impact of biomimetic designs in extending cycle life, improving energy density, and enhancing safety, thereby positioning Zn-MnO₂ batteries as viable candidates for large-scale energy storage applications.
Keywords: Bioinspired design; Zn-MnO₂ batteries; Hierarchical structures; Ion transport optimization; Mechanical stability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008700
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008700
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126140
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().