EconPapers    
Economics at your fingertips  
 

A review on thermal management strategy for liquid-cooling proton exchange membrane fuel cells: Temperature regulation and cold start

Hongye Su, Haisong Xu, Lei Wang, Zhiyang Liu and Lei Xie

Applied Energy, 2025, vol. 393, issue C, No S0306261925008724

Abstract: Effective thermal management strategies are crucial for optimizing the performance and durability of proton exchange membrane fuel cells (PEMFCs). This paper presents a comprehensive review of thermal management strategies for liquid-cooling PEMFCs, with a particular emphasis on temperature regulation and cold start operations. Firstly, the fundamental thermal characteristics of PEMFCs under both above-freezing and sub-freezing temperatures are introduced, followed by an overview of both offline and online identification methods for thermal system models. Subsequently, considering the intrinsic nonlinearity and coupling characteristics of PEMFC thermal systems, along with the presence of diverse internal and external disturbances, various temperature control strategies are reviewed and classified from four perspectives: (1) exploring the relationship between optimal operational temperature and overall performance of PEMFCs, (2) managing the coupling effects in multiple input multiple output cooling systems, (3) enhancing system robustness against disturbances and uncertainties, and (4) reducing the parasitic power consumption of the cooling system. Strategies can be classified into categories such as model-based, data-driven, and adaptive types, based on their underlying mechanisms. From the perspective of cold start strategies, the review explores the efficient and rapid start-up techniques that ensure temperature uniformity and voltage consistency within the fuel cell stack. The importance of shutdown purging for water removal is highlighted as a critical measure to prevent ice formation and facilitate subsequent start-ups. In conclusion, current research status on PEMFC thermal management strategies is summarized. Furthermore, future directions for advancing thermal management systems in PEMFCs are provided.

Keywords: Proton exchange membrane fuel cells; Thermal management strategy; Temperature control; Cold start (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008724

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126142

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008724