EconPapers    
Economics at your fingertips  
 

Deep learning-based distributionally robust joint chance constrained distribution networks PV hosting capacity assessment

Zihui Wang, Yanbing Jia, Xiaoqing Han, Peng Wang and Jiajie Liu

Applied Energy, 2025, vol. 394, issue C, No S0306261925008608

Abstract: As distributed photovoltaic (PV) penetration in distribution networks (DNs) is increasing, it is essential to assess the PV hosting capacity (PVHC) to ensure the safe operation of DNs. This paper proposes a data-driven distributionally robust joint chance constrained (DRJCC) distribution networks PVHC assessment framework. Firstly, the spatiotemporal attention, projection, supervision, and Transformer architecture-based generative adversarial blocks are introduced to develop an augmented time series generative adversarial network (ATS-GAN), which, by integrating both supervised and unsupervised learning during the joint training process, better captures the spatiotemporal characteristics of PV and load power. Subsequently, leveraging the ATS-GAN, a Wasserstein metrics-based ambiguity set of PV and load power probability distributions is constructed, centered on the distributions induced by the generator neural network. Secondly, the DRJCC PVHC assessment model is proposed. A combination of the Bonferroni inequality and conditional value-at-risk approximation is adopted to transform the multivariate DRJCC model into a tractable conic formulation for efficient computation. Numerical results demonstrate that the proposed method effectively captures the spatiotemporal characteristics and uncertainties of multivariate distributions under multiple constraints, significantly reducing the conservatism typically associated with distributionally robust individual chance constraints.

Keywords: Deep learning; Generative adversarial network; Distributionally robust joint chance constraints; PV hosting capacity; Distribution network; Uncertainties (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925008608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008608

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126130

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008608