Strategic integration of urban excess heat sources in a district heating system: A Spatio-temporal optimisation methodology
Shravan Kumar,
Ali Kök,
Johan Dalgren,
Jagruti Thakur,
Viktoria Martin and
Francesco Gardumi
Applied Energy, 2025, vol. 396, issue C, No S0306261925009663
Abstract:
Heating and cooling activities account for nearly half of the European Union's total energy use, yet only 23 % of this demand is met by renewable sources. As reliance on fossil fuels declines and waste suitable for incineration diminishes, alternative renewable and excess heat (EH) sources become essential. In Sweden, approximately 4.7 TWh of industrial EH is recovered annually, contributing 12 % of available EH and 9 % of the district heating (DH) supply. Despite projections that EH utilisation will rise from 22 TWh in 2015 to 33 TWh by 2050, low-temperature levels and economic viability challenges have limited Urban Excess Heat (UEH) integration into DH systems. This study develops a spatial-techno-economic optimisation framework to support long-term UEH integration in DH networks. The framework, composed of three open-source tools for spatial network optimisation, long-term planning, and short-term operational optimisation, was applied to the City of Stockholm's DH system, where over 80 % of buildings are DH-connected. Results indicate that UEH sources within a 5-km radius of primary DH pipelines have the highest feasibility for integration. Economic analyses revealed that investment sensitivity is highest with fluctuations in electricity prices, emphasising the cost implications of energy markets on UEH feasibility. Scenarios with varying grid temperatures demonstrated that lower temperatures improve UEH uptake but require adaptive network designs for efficiency. Iterative linking of long-term and high-resolution operational models highlighted differences between cost-optimal plans and operational realities, suggesting refinement needs. This framework offers robust pre-feasibility insights for stakeholders, enhancing strategic planning for sustainable urban heating across municipal and regional levels.
Keywords: Urban excess heat; Excess heat; District heating system; Energy system modelling; Soft linking (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925009663
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009663
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126236
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().