EconPapers    
Economics at your fingertips  
 

Enhancing thermally regenerative battery performance by mitigating ammonia crossover

Yun Mo Ko, Sunghun Lee, Seonggon Kim and Yong Tae Kang

Applied Energy, 2025, vol. 396, issue C, No S0306261925010670

Abstract: The application of low-grade heat sources (<130 °C) for energy conversion is crucial in various industries facing rising energy demands. Thermally regenerative batteries (TRBs) have emerged as a promising solution for converting heat into electricity while also enabling energy storage. However, ammonia crossover and self-discharge considerably compromise the long-term stability and efficiency of ammonia-based TRBs. In this study, a buffer chamber is introduced to mitigate ammonia crossover, improve system stability, and extend the discharge duration. Experimental results demonstrate that the buffer system effectively reduces ammonia permeation into the catholyte, minimizes pH fluctuations, and enhances overall performance. In the present study, the maximum power density of 53.1 W/m2 was obtained. The discharge period was extended to 800 min from 330 min with the buffer system, resulting in stable total energy output. In this case, although the power density decreased, the addition of the chamber increased the total energy output by 0.201 kWh/m2 compared to the 330 min operation case. The highest heat-to-electric conversion efficiency achieved was 1.18 % using a Cu(BF₄)2/NH₄BF₄ electrolyte pair. Additionally, a Z index based on concentration gradients was developed to assess TRB efficiency, offering a more accurate evaluation metric than conventional thermoelectric figures of merit. These findings suggest that the integration of a buffer chamber and the optimization of electrolyte compositions can significantly enhance TRB performance.

Keywords: Ammonia crossover; Buffer chamber; Energy efficiency; Low-grade heat source; Thermally regenerative battery (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925010670
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:396:y:2025:i:c:s0306261925010670

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126337

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-29
Handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925010670