Data-driven control, optimization, and decision-making in active power distribution networks
Nanpeng Yu,
Shaorong Zhang,
Jingtao Qin,
Patricia Hidalgo-Gonzalez,
Roel Dobbe,
Yang Liu,
Anamika Dubey,
Yubo Wang,
John Dirkman,
Haiwang Zhong,
Ning Lu,
Emily Ma,
Zhaohao Ding,
Di Cao,
Junbo Zhao and
Yuanqi Gao
Applied Energy, 2025, vol. 397, issue C, No S0306261925009833
Abstract:
This paper reviews the burgeoning field of data-driven algorithms and their application in solving increasingly complex decision-making, optimization, and control problems within active distribution networks. By summarizing a wide array of use cases, including network reconfiguration and restoration, crew dispatch, Volt-Var control, dispatch of distributed energy resources, and optimal power flow, we underscore the versatility and potential of data-driven approaches to improve active distribution system operations. The categorization of these algorithms into four main groups-mathematical optimization, end-to-end learning, learning-assisted optimization, and physics-informed learning-provides a structured overview of the current state of research in this domain. Additionally, we delve into enhanced algorithmic strategies such as non-centralized methods, robust and stochastic methods, and online learning, which represent significant advancements in addressing the unique challenges of active distribution systems. The discussion extends to the critical role of datasets and test systems in fostering an open and collaborative research environment, essential for the validation and benchmarking of novel data-driven solutions. In conclusion, we outline the primary challenges that must be navigated to bridge the gap between theoretical research and practical implementation, alongside the opportunities that lie ahead. These insights aim to pave the way for the development of more resilient, efficient, and adaptive active distribution networks, leveraging the full spectrum of data-driven algorithmic innovations.
Keywords: Data-driven control; Decision-making; Active distribution networks; Learning-assisted optimization; Physics-informed learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925009833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:397:y:2025:i:c:s0306261925009833
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126253
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().