Quantification of electrical system flexibility by local multi-energy systems: Impact of the system design and component interdependencies
Philipp Glücker,
Sleiman Mhanna,
Thiemo Pesch,
Andrea Benigni and
Pierluigi Mancarella
Applied Energy, 2025, vol. 397, issue C, No S0306261925010724
Abstract:
Multi-energy systems (MES) providing electrical flexibility will be essential for low-carbon power grids. With the aim of embedding flexibility provision into the design phase of local MES, the presented framework proposes a quantitative assessment of how the sizing of individual and interdependent components affects technical flexibility. It identifies key components that either enhance or reduce the flexibility of MES. The framework includes a sensitivity analysis that provides valuable technical insights, such as a deeper understanding of limiting factors and interdependencies between components across energy vectors. Moreover, flexibility is quantified over multiple time steps in relation to a predetermined reference schedule, which is particularly important for energy systems that must submit their planned schedule in advance, thus ensuring constant flexibility provision for a specified duration. The adopted case studies, which use a residential building and a local energy community, underpin the capabilities of the proposed framework and its applicability to energy systems with internal network constraints. One of the key findings is that the coupled flexibility from the heat vector significantly increases active power flexibility, i.e., the range of increase and decrease in its active power during operation. This anchors heat pumps as a linchpin coupling component between electricity and heat in MES. Furthermore, the interdependence between the maximum thermal output of the heat pump and the thermal capacity of the hot water storage tank was quantified by a linear threshold relation, beyond which increasing the size of the heat pump does not improve system flexibility.
Keywords: Component sizing; Energy community; Flexibility; Heat pump; Multi-energy system; Nodal operating envelope (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925010724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010724
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2025.126342
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().